隨著技術發展,人工智慧(AI)已應用在做一些簡單決定,應用領域與複雜度也在持續拓展中,未來 AI 可能會在自駕車上做出攸關生命的抉擇,但 AI 工程師面臨一個問題:他們通常不知道自己的創作在想什麼。
機器的神經網路
華爾街日報報導,AI 難以被定義,之所以會有這樣的現象,和神經網路的使用有關。
當研究人員開始透過「學習」訓練機器,將經驗轉化為模擬神經網路的系統,產生出的結果不是代碼,而是由不可讀、數百萬甚至數十億的人造神經元,給出 AI 工程師賦予任務的答案。
多數研究人員都同意,認識 AI 是一項迫切的挑戰。如果我們不知道人造思維如何運作,又該如何確定它抱持偏見或預測錯誤的結果?
我們不會知道 AI 是否有「種族歧視」,或是無法預期的思維讓自駕車可能發生事故,或許有機會能辨別 AI 對事物是否抱持著偏見,那可能會是 AI 做出無數個決定之後的事了。
去理解 AI 什麼時候可能會失敗或出現意外行為,是非常重要的,畢竟我們都不希望關鍵時刻出現任何意外,或是聽到「很抱歉,但我恐怕不能這麼做」。
AI 不帶偏見?
Pinterest 的軟體工程師 Tracy Chou,在公司內專門負責機器學習項目,他認為 AI 發展中很大的問題在於,多數人都把 AI 或機器學習想得過於「中立」。
「多數人都不了解的是,是人類設計了這些 AI 模型,也是人類選擇要用什麼數據來訓練機器。」
華爾街日報試著用一個最簡單的例子來解釋:Google 翻譯。當你在 Google 翻譯上輸入「醫生」,要求翻譯成葡萄牙語時,總是會得到陽性名詞 médico,而非陰性名詞的 médica;輸入「護士」時,則會得到陰性的 enfermeira,而非陽性的 enfermeiro。
聽起來有些陰謀論,但這其實只是用來訓練翻譯系統的文學體系,舊有的偏見所導致的自然結果。類似的事情其實經常發生,在研究人員並未注意到的情況下,AI 很有可能在無意中成為偏見的代理人。
和人類不同的是,我們不能直接詢問機器「為什麼這麼做?」儘管 AI 在限定的環境條件下能表現十分出色,但談到內省(introspection)的能力,AI 的程度可能與蟑螂差不多。
如何解讀 AI 的思考
應該如何解讀人工智慧?這是一個困難的問題,就連美國國防高級研究計畫署(DARPA)都在提供資金給相關研究人員,希望能夠解決這個問題。
在機器學習中,工程師先是編寫了類似原始大腦的神經網路,再透過給予大量數據來進行訓練,機器則從中學習辨別與理解,就像大腦運作的方式一樣,也因為如此,AI「思考」的方式人無法理解。
這個困境工程師稱之為「可解釋性」問題,而神經網路則稱為「黑盒子」──你可以刺激並觀察,但無法理解內在。
身為現今最知名 AI「AlphaGo」的開發者,Alphabet 的子公司 DeepMind 研究團隊也希望解決這個問題,因此決定用一個全新方式來了解 AI:就像對待人類的孩子。
這並不是一個比喻,DeepMind 的研究科學家 David Barrett 表示,團隊正在使用和心理學家用在孩子身上的認知心理學技術及測試,來試圖了解 AI 的想法。
Barrett 認為,認知科學對人腦的研究已有數十年,如果應用到機器的過程順利,將能理解 AI 的思考模式,並為它的決定負責。
在研究中,DeepMind 至少已理解了 AI 的一種學習模式:一次性學習思考。這個設計原先是用來讓 AI 看過一次項目後,就學習單字的意思,DeepMind 意外發現,AI 解決這項問題的方式和人類相同,是透過形狀來辨別物體。
研究人員發現,即使沒有著指導,也存在著許多方法來識別隨機對象,像是顏色、質感及行為模式,AI 卻是選擇像人類一樣用形狀來識別物體,這樣的行為模式是以前未曾察覺的。
機器人心理學
類似這樣對 AI 思考的理解只是開始,就像人類心理學一樣,機器人心理學未來也可能發展出一種「治療」行為──也就是去改變 AI 的心態。
工程師在創造 AI 時,經常會選擇創造多種版本,以便於從中找出最好的來使用,Barrett 認為,透過認知心理學的應用,工程師可能會更容易創造出「想法」符合人類需求的 AI。
又或者,我們也可能從中發現,AI 的思考模式與人類有所不同,人們或許能從中學習到一些新的東西,像是該如何解決一些問題。
在用人工智慧取代人類決策者時,我們總是希望機器做得更好,犯更少錯誤並承擔責任。當 AI 的產出能被衡量,人們或許就能夠追蹤它們做決定背後的過程。
在現今法庭中,我們總是由人來解決商業問題上的爭執,如果改由機器取代人力,我們或許就能夠觀察到「決策者」在過程中的心態轉變,與所有可能出現的偏見。
文章出自: https://tw.news.yahoo.com/deepmind-%E6%83%B3%E9%80%8F%E9%81%8E%E8%AA%8D%E7%9F%A5%E5%BF%83%E7%90%86%E澄瑩兒童陪孩子長大澄瑩成長椅澄瑩書桌樂澄童年書桌椅澄瑩人體工學
留言列表